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Abstract--Studies of continental seismogenic zones indicate that deformation during an orogenic stage is 
episodic and spasmodic down to mid-crustal depths, and that seismic as well as aseismic modes of deformation 
need to be incorporated in quantitative theories of foreland belts. Such a theory is developed here. It includes a 
method to help decipher the development of structures such as imbricate fans, frontal ramps and ramp anticlines, 
as illustrated for the Hogsback frontal ramp and its ramp anticline in the Kemmerer region of the Wyoming 
Salient. 

The structure of the Hogsback ramp is consistent with a shear-fracture origin. Limit equilibrium mechanics 
indicate that shear failure would have proceeded incrementally, possibly in response to recurring fault slip on the 
basal d6collement. Contrasts in elastic constants and rock strength are critical, e.g. current data indicate that 
shear-failure development of the ramp would have begun (1) fourth-filth's distance down the ramp in competent 
Madison carbonates if they compared in strength with the Marianna limestone, or (2) higher in the section if the 
Madison compared in strength with the Hasmark or Blair dolostones. 

Whether the initial development of the ramp anticline involved seismic modes is not clear yet, but elastic 
stiffness data indicate that subsequent imbrication of the anticline did involve seismic as well as aseismic modes 
of deformation. 

INTRODUCTION 

FOR many years, the mechanics of fold-and-thrust belts 
have been analyzed almost exclusively in terms of quasi- 
static deformation. Recent developments in seismo- 
tectonics, however, indicate that seismic as well as 
aseismic modes of deformation need to be incorporated 
in mechanical analyses of foreland belts. A prototype 
fault model consistent with these modes is described and 
quantified. Then the fault model is related to the struc- 
ture of a highly documented thrust terrain originally 
mapped by William Rubey and his colleagues: the classic 
Kemmerer region of the Wyoming Salient. 

The objectives are (1) to extend a preliminary version 
of the thrust-belt theory (Bombolakis 1986) to a more 
advanced state, (2) to present a partial test of the theory 
and (3) to illustrate how several thrust-belt parameters 
can be calculated from field data not previously utilized. 
The parameters include relative elastic stiffnesses of the 
strata calculated from seismic reflection data. These 
calculations therefore should facilitate predictions of 
where folding and fracture ought to occur during the 
development of foreland belts. 

SEISMOTECTONIC IMPLICATIONS 

Studies of continental seismogenic zones now indicate 
that deformation during an orogenic stage is episodic 
and spasmodic down through midcrustal depths (e.g. 
Allen 1981, Jackson 1983, Savage 1983, Sibson 1983). 
Seismogenic depths along the compressional zones 
range from 10 to 15 km or more along the California 
Coast Ranges, to 20 km under the Transverse Ranges, 

to 25 km or more along the Zagros, to 50 km or more 
along the Himalayas. The seismic events are not 
restricted to Precambrian basement or lower levels. 
Seismic events can also occur within the sedimentary 
packages of thrust belts (e.g. Berberian 1982, Davis et 
al. 1983, Namson & Davis 1988). Consequently, seismic 
as well as aseismic modes of deformation need to be 
considered in the development of foreland belts where 
strata are lithified and exhibit pronounced differences in 
competency, in contrast with those accretionary wedges 
where the sedimentary packages are poorly indurated 
when they enter the deformation mill. 

Secondly, earthquakes have repeated one another 
with remarkable reproducibility along specific fault 
segments (Sieh 1981, Aki 1984, Schwartz & 
Coppersmith 1984, 1986, Schwartz 1987). A good 
example in the Tell Atlas thrust terrain is described by 
Swan (1987). In general, repeatable earthquakes are 
called characteristic earthquakes when the main shocks 
recur within a narrow range of magnitudes. The fault 
segments, the barriers to rupture along the fault zone 
and the distribution of slip on a fault segment--all seem 
to persist through repeated earthquakes until the 
geometry and structure of the system are altered 
sufficiently to accommodate a change in the style of 
deformation. 

Thirdly, some major folds have been growing 
spasmodically in response to seismic slip on blind thrusts 
in the California Coast Ranges (Stein & King 1984, Stein 
1986, 1987, Wentworth & Zoback 1986, Namson & 
Davis 1988), on blind reverse faults in the coastal 
Hawke's Bay region of New Zealand (Hull 1986), and 
along the El Asnam thrust system in Algeria (King & 
Veta-Finzi 1981). In the case of the Zagros fold-and- 
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thrust belt. compression axes of most focal mechanism 
solutions are perpendicular to major fold axes in lran 
(Jackson 1983). 

Theories of folding and thrusting, however, have 
been formulated almost exclusively in terms of slow. 
continuous, or off-and-on quasi-static deformation, e.g. 
the critical wedge theories of Chapple (1978), Davis et 

aL (1983), Stockmai (1983), Dahlen et al. (1984) and 
Suppe (1985). Moreover, Woodward (1987) has shown 
that critical wedge theories do not apply to the Tennes- 
see sector of the Southern Appalachians where adequate 
field data are available, nor to that part of the Wyoming 
sector of the Cordilleran belt where the structure is well 
documented. 

Thus, the problems inherent in critical wedge theories 
are not yet resolved for foreland belts. Furthermore. if 
the temperature in the hinterland of a foreland belt is 
close to the melting point, as is the case for a deformed 
snow wedge in front of a moving snow plow. then 
deformation in the hinterland could be similar to either 
the snow plow analog of critical wedge theory, or to the 
gravitational spreading analysis of EUiott (1976a. 1980). 
There currently is no hard evidence to determine which 
of several hypotheses are appropriate for the deep hin- 
terland of a foreland belt. In view of the uncertainties, 
the following fault model is formulated with respect to 
specific observations in four areas: earthquake 
seismology, seismotectonics, well documented portions 
of thrust belts and laboratory studies. 

DESCRIPTION OF FAULT MODEL 

Figure 1 depicts a stage of thrust-belt development 
that is reproduced during piggy-back thrusting. It is 
characterized by a basal dEcollement, a frontal ramp and 
a simple ramp anticline. The fault in Fig. 1 accordingly 
consists of a lower flat (the basal dScollem ent), the ramp 
and an upper flat. 

In the context of earthquake seismology (Aki 1984), 
the frontal ramp is regarded as a geometric barrier to 
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Fig. l A developmental  stage of a foreland belt The thrust-belt 
segment  above rupture length L undergoes  seismic slip in the foreland 
direction. The  horizontal dashed line subdivides the segment  into two 
main lithotectonic blocks of masses M t and M2. The lower block has a 

thickness equal to ramp height. 

rupture propagation of the lower flat beneath the ramp 
until the geometry and structure of the ramp region are 
altered sufficiently. Consequently, the thrust sheet 
initially would be displaced over the ramp to form the 
simple anticline shown in Fig. 1. Recurring seismic and 
aseismic slip along the lower flat subsequently would 
induce further deformation in the ramp region before 
substantial subhorizontal growth of the lower flat could 
proceed in the foreland direction beneath the ramp. 
Several modes of deformation are possible in the ramp 
region and so. for purposes of illustration, we consider 
principally the transformation of the simple ramp anti- 
cline into an imbricated ramp anticline. 

The fault model for this sequence of deform ation is as 
follows. Preseismic creep displacement of hangingwall 
strata develops along a-b  of the basal d~collement. It 
produces a tectonic load along b-c,  leading to a transient 
stress drop and seismic slip along rupture length L. L is 
the length of a seismically active thrust-belt segment 
between two barriers, one of which happens to be a 
frontal ramp. Several types of barriers are possible, and 
so the second barrier in the vicinity of a-b  is not shown. 
Because L cannot grow substantially in the foreland 
direction beneath the ramp barrier, preseismic fault 
creep again develops along a-b.  and another transient 
stress drop and repetitive seismic slip recur along nearly 
the same rupture length. This regimen induces slip of 
hangingwall strata up the ramp, producing episodic 
folding and fracture in the ramp region. 

The Coalinga anticline is a case in point. The ML 6.7 
Coalinga earthquake occurred on 2 May 1983. An 
increase of fold amplitude of approximately 0.5 m or 
more was induced by seismic slip on a blind thrust at 
approximately 10 km depth (Stein 1987). Seismic 
profiles indicate that this increase occurred above either 
a frontal ramp (Namson & Davis 1988) or a set of splay 
thrusts (Wentworth & Zoback 1986). The postseismic 
increase of fold amplitude amounted to only 50-60 mm 
at a decaying rate during the subsequent 2 year period 
(Stein 1986). Thus. a substantial part of the renewed 
folding occurred coseismically in response to seismic slip 
on a complex flat-ramp-thrust system. 

The origins of ramps and fiats have not been estab- 
lished yet (Bombolakis 1986, Eisenstadt & De Paor 
1987). A statistical analysis of major fiats in the external 
portion of the Southern Canadian foreland belt indicates 
that most of the fiats lie within incompetent units. 
whereas most major ramps cut across stratigraphic 
sequences that contain dominant competent members 
(Dahlstrom 1970. Verrall etaL 1981). The same relations 
seem to hold in the Idaho-Wyoming-Utah belt (Royse 
et al. 1975. Dixon 1982. Lamerson 1982), in the Helvetic 
Nappes (Ramsay 1981), and in substantial portions of 
the Central and Southern Appalachians (Roeder et al. 
1978. Woodward 1985. Mitra 1986). Seismic reflection 
profiles across the North American belts indicate that 
the basal dEcollements are not strictly bedding-parallel. 
They seem to cut up-section regionally at a slight angle 
to bedding in the foreland direction (Woodward et al. 
1985). Locally, however, major fiats apparently can cut 
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down-section, perhaps due to competing R~ and R2 
Riedel shearing in the d6collement zone (Platt & Leggett 
1986, Woodward et al. 1988). In the context of earth- 
quake seismology, the resultant geometrical irregularity 
would constitute either a ba~"ier or an asperity. 

The d6collements and detachments within competent 
sequences are more enigmatic:. In a comparison of well 
exposed mesoscopic ramp--flat systems in several North 
American belts, Serra (I977, personal communication 
1987) observed that fiats in carbonate rock typically 
follow shaly or silty partings. It is not known, however, 
why the much larger scale fiats and detachments in 
carbonate rock did not originate and remain within 
nearby incompetent units of a given stratigraphic 
sequence. Principalexamples are the Keystone and Red 
Spring thrust complexes with d6collements within the 
Bonanza King dolostones instead of the Bright Angel 
shale (Burchfiel etal.  1982), the Heart Mountain detach- 
ment fault within the Bighorn Dolomite (Pierce 1987a, 
b) and the Lochseiten calc-mylonite at the base of the 
Glarus (Schmid 1975). 

In each case, the evidence is negative or inconclusive 
that abnormal pore pressures were responsible for either 
the stratigraphic position of the fault or the fault dis- 
placements. For example, the 'basal tongues' described 
by Gretener (1977) may be only minor late-stage 
phenomena, due to local transient pore pressure 
increases produced by faulting, or the remnant effects of 
abnormal pore pressure that triggered faulting. Thus 
far, the critical role of abnormal pore pressure has been 
documented in only a very few cases, notably for the 
high-angle Rangely fault (Raleigh et al. 1976) and for the 
low-angle Hartford dike detachment slide (Bombolakis 
1981). Thus, the characterization of fault behavior must 
be restricted to empirical observations of active faults 
until adequate information accumulates on the various 
physico-chemical processes of faulting illustrated by 
Chester (1985),Gilotti & Kumpulainen (1986), Wojtal 
& Mitra (1986), Logan (1987) and Schmid et al. (1987). 

In conformity with Bombolakis (1986), the fault 
model is defined for the segment bounded in Fig. 1 by the 
vertical dashed lines hi and h2, topographic slope angle a 
and rupture length L, where the horizontal dashed line 
subdivides the segment into two major lithotectonic 
units: a lower block of mass M~ with thickness equal to 
ramp height and an upper block of overlying strata of 
mass M2. The lower block typically includes more com- 
petent strata than the upper block. As will be seen, the 
following quantification of this fault model is inde- 
pendent of whether abnormal pore pressure is the par- 
ameter that triggers fault slip. 

QUANTIFICATION OF THE FAULT MODEL 

The fault model in Fig. 1 is quantified in Fig. 2. The 
lower block in Fig. 2(a) is defined by mass M1 over 
rupture length L. The block of overlying strata is defined 
by mass M2 for length L and topographic slope angle a. 
A common observation in foreland belts is that the net 
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Fig. 2. Fault model of the thrust-belt segment above rupture length L 
in Fig. 1. The fault model, at the verge of stick--slip in (a), undergoes 

seismic slip in (b) with a stress drop from P to S. 

slip of a thrust sheet varies in the strike direction, e.g. by 
the 'bow-and-arrow' rule of Elliott (1976b). Con- 
sequently, the thrust-belt segment in Fig. 2 is defined to 
be of unit width W perpendicular to the diagram, for 
future analyses of slip variation in the strike direction. 

In a manner similar to the elastic rebound theory, 
preseismic creep compresses the kl and k 2 springs, and 
deflects torsion spring K through angle ~, potentially 
compressing the k~ and k~ springs, with the result that the 
basal shear stress at the bottom of block M~ approaches 
its limiting value P. The elastic constants k~, k~, k2, k~, 
and torsion constant K are calculated with seismic and 
stratigraphic data, thereby taking facies changes and 
contrasts of rock properties into account. 

The configuration illustrated in Fig. 2(a) corresponds 
to the tectonic situation in which the subhodzontal 
elastic tectonic strain increases with depth down to the 
basal d~collement. If we define Xt and X2 as the 
horizontal co-ordinates of Mt and M2, respectively, then 
the relative elastic displacement between the blocks at 
the verge of stick-slip is X1 - X2 = R~. However, the 
additional physical possibilities for ~ are that ~ = 0 or 
that ~ is a clockwise angle instead of a counterclockwise 
angle with respect to the dotted reference line X = 0. 
For generality therefore, q~ is defined positive when 
measured counterclockwise as shown, and negative 
when measured clockwise. For each case, X2 = - R ~  if 
we choose the co-ordinate system with X~ = 0 when the 
system is at the verge of stick-slip. These definitions 
involve no additional physical assumptions, except with 
respect to the radius of gyration R. 

The radius of gyration is a fundamental concept in 
Newtonian mechanics (e.g. Frank 1939, p. 168) that 
enables a body of complicated geometry to be replaced 
by a simPler body to facilitate mechanical analyses. The 
upper block of mass M2 in Fig. 1 has a complex geometry, 
but it can be replaced by a mass point at a distance R by 
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calculating its moment of inertia with respect to the top 
of the lower block. Because R is larger than the vertical 
distance measured from the horizontal dashed line to the 
center of mass M2 in Fig. 1. the blocks are shown 
schematically in Fig. 2 as if they were separated. But 
since they actually are in mutual contact, the average 
internal shear along the horizontal dashed line in Fig. 1 
is characterized by the distortion of the torsion spring of 
elastic constant K at the other end of R in Fig. 2. Thus. 
the radius of gyration also serves as the moment arm of 
the torque exerted by the upper block on the lower 
block. 

The basal shear stresses are not constant along the 
fault surface in Fig. 2, nor along a comparable segment 
of an actual fault. Therefore, their effects are calculated 
in terms of their average values. When the average basal 
shear stress reaches its limiting value P in Fig. 2(a), a 
rapid transient stress drop occurs from P to S. with 
stick-slip motion in Fig. 2(b). There, XI is the accelera- 
tion of the lower block, and -'~2 is the acceleration of the 
upper block. 0 = ~ when stick-slip begins. The horizon- 
tal displacements X~ of Mt and X1 of M, are positive 
when measured to the right of the dotted reference line 
X = 0 in Fig. 2(a). 

Both P and S can be related directly to the time-pre- 
dictable and slip-predictable models of recurring earth- 
quakes (Shimazaki & Nakata 1980, Mogi 1985). In the 
time-predictable model, P has a constant recurring value 
of the peak strength, whereas S varies in value from one 
earthquake to the next. In the slip-predictable model. S 
has a constant recurring value of the residual strength, 
whereas it is P that varies in value from one earthquake 
to the next. Because of the uncertainties regarding P and 
S, we focus attention on their difference (P - S). The 
difference is directly proportional to the average stress 
drop calculated in earthquake seismology (Bombolakis 
1986). 

The equations of motion are obtained from the free- 
body diagrams of the model in Fig. 3. Horizontal forces 
are positive when they act towards the right in the 
positive X-direction; negative in the opposite direction. 
Since the system in Fig. 2(a) is at the verge of stick-slip, 
the basal shear force in Fig. 3(a) equals - P L W .  The 
force exerted by each linear spring during this stage is its 
spring constant times the value of displacement 
imposed by preseismic creep. A force of magnitude 
K ¢ / R  also is associated with precursory torsion, where 
K¢ is the torque and R is the moment arm. Since the sum 
of the forces on each block must equal zero in Fig. 3(a), 
we have two equations that enable the preseismic creep 
to be expressed quantitatively in terms of the precursory 
internal shear K g / R  and the basal shear PLW.  

As soon as seismic slip begins, the forces in Fig. 3(a) 
transform to those in Fig. 3(b). The sum of the forces on 
each block now equals mass × acceleration. Therefore, 
by means of the four equations shown in Fig. 3. the 
equations of motion can be expressed as 

Mlff l  + (kl + k~ + KIRZ)X1 - (K/R:)X2 
= (P - S ) L W  + KO/R (1) 

Verge of  S t i c k - s l i p :  (a) 
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Fig. 3. Free-body diagrams of the horizontal forces acting on the fault 
model. 

and 

M2)( ~ + (k 2 + k~ + K/R2)X2 - (K/R'-)X] 
= -(k2 + k~ + K/R2)Rq~ (2) 

using the geometric relation that RO = X~ - X2. These 
equations reduce, respectively, to equations (1) and (2) 
of Bombolakis (1986) for the special case of q) = 0. (The 
sign of the third term of equation 2 in the 1986 paper 
should be minus instead of plus, a typographic error.) 

The equations of motion are coupled non-homo- 
geneous differential equations. Their general solution 
consists of two parts: the homogeneous solution plus the 
particular solution. The homogeneous solution is 
derived for the ease in which the sum of the terms on the 
left-hand side of each equation is set equal to zero. This 
homogeneous solution actually corresponds to the 
general solution of the mechanical analog in coupled 
oscillator theory (Symon 1971) shown in Fig. 4. 

Two masses M1 and M 2 are connected in series by 
three linear springs in Fig. 4, where they undergo 
horizontal oscillatory motion. Symon (1971, p. 192) 
shows that their equations of motion are 

MlJ(1 + (kT + k'~)X1 + k'~X2 = 0 (3) 

and 

Mvi(2 + (k~ + k~)X  2 .a. k~X1 = 0. (4) 

The mathematical analogy between Fig. 4 and the 
homogeneous case for Fig. 2 is effected by re-writing 
equations (1) and (2) as 
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Fig. 4. Analog model used for the homogeneous solution of the fault 
model problem in Fig. 2. 

X I = X ~ + X ~ ,  ) ( 2 = X ,  h + X ~ ,  (13) 

where, following Symon (1971), the natural frequencies 
are  

000[ = V0)20 + ½At.02, tO~ = V0)~0 -- ½A0) 2 (14) 

with 

and 

where 

MI,~" 1 + k'~X 1 + k ' jX  2 ---- 0 

M2X2 .+ k' X2 + k' Xl = o, 

(5) 

(6) 

!(~ = k I + k~ + K/R 2 ]  

i(~ = k 2 + k~ + K/R2 I" (7) 
idj = -- K / R  2 

Therefore, the homogeneous solution (Symon 1971, 
equations 4.160 and 4.161) for equations (1) and (2) is 

X~l = A1 cos (0)it + 01) 2K 2 

X A 2 COS (0)-~,t + 02) (8) 

and 

X~ = ~ A1 cos (0)~t + 01) 

+ A2 cos (0)~t + 02), (9) 

where At, A2, 01 and 02 are the constants of integration. 
They are evaluated with the initial conditions in Fig. 2 
after the general solution of (1) and (2) is obtained. 
Consequently, we proceed to the particular solution as 
follows. First, equations (1) and (2) are divided through, 
respectively, by MI and M2. Note that these equations 
now are expressed in the traditional form of non- 
homogeneous equations with constant coefficients 
where the coefficient of the first derivative term in each 
equation is zero, and where the terms on the right-hand 
sides of the equations are constants. Secondly, )/'x and X'2 
are each set equal to zero for a particular case (e.g. 
Murphy 1960, p. 146). Third, the two equations in this 
form are solved simultaneously for the particular solu- 
tion X~ of equation (1) and X[  of equation (2). The 
result is 

Xp I = k 2 + k~ + K / R  2 B (P - S)LW (10) 

and 

K/R 2 
XP2= B (P - S ) L W -  R~p, (11) 

where 

B = (kl + ki)(kz + k9  + (kl + kl + k2 + k g K / R  2. 
(12) 

In summary, then, the general solution for a variety of 
initial conditions in Fig. 2 is 

~/kl + k{ + K/R 2 
0)10 = MI  

(15) 
z~/k 2 + k~ + K/R z 

00020 = M2 

ACt.) 2 = +2K 2 when 0)1o = 0)20 (16) 

([ A0) 2 = (00020 000220) 1 + (00010 + 00020) J 1 

when 0)10 ~ 00020 (17) 

K2 _ k~ _ K/R 2 (18) 
v ~ I M 2  X / M t M 2  

We choose the negative sign in (16) because (18) is 
negative, noting that 0)~ is the higher frequency when 
0)10 -> 0)20, whereas 0)~ is the higher frequency when 
tom < to20. Here 0)10 and 0)20 are the natural frequencies 
of horizontal oscillation that the lower and upper blocks, 
Ml and M2, would have, respectively, if each block were 
a simple harmonic oscillator moving independently of 
each other. The result is that the motion of each block 
involves its own distinct combination of the natural 
frequencies in (14). 

The constants of integration (At, A2, 01 and 02) now 
can be determined from the initial conditions in Fig. 2. 
There is no loss of generality in assuming that stick-slip 
begins at reference time t = 0. The initial conditions are 
that the displacements are Xl = 0 and X2 = - R~O at 
t = 0, and that the initial velocities are X 1 = 0 and 
X2 = 0. The displacement equations are given in (13), 
and the velocity equations are obtained by differen- 
tiating equations (13) once with respect to time. Sub- 
stituting the initial conditions into these four equations, 
we find that 

01 = 0, 02 = 0 

and 

[A0) 2 -- 20)20]M2 
At = . - ~ - ' ~ - - ~  ( P -  S )LW 

(19) 

(20) 

] A0) z + 2K 2 

A2 = ( P -  S)LW. (21) 
r / A 0 )  2 "~2 1] + 

J 
To determine the net slip of a stick-slip event, we 

need to consider the duration time of the lower block's 
motion. The velocity of the lower block decreases to 
zero at the end of a stick-slip event, whereas the upper 
block continues to oscillate until damping terminates the 
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ground motion. Therefore, by differentiating X~ of 
equations (13) once with respect to time, then setting the 
resulting velocity equation equal to zero, the duration 
time equation is found to be 

' J 2K2c°IA1M1 , 
COS tO2/d = 4-__1 -- Ato2to~A2M 2, sin 2 tort a, (22) 

where td is the duration time of stick-slip. This equation 
is solved implicitly for td when the other parameters are 
calculated from field data. Substitution of its value into 
the equation for X~ automatically determines the 
dynamic net slip equation as 

X 1 = A 1 cos tol/d -- ~ A2 cos to-~t d 

k2 + k~ + K/R 2 
- B ( P -  S)LW. (23) 

where Xj is the net slip. 
When this net slip is achieved, the motion of the upper 

block transforms from a state with natural frequencies 
to[ and w~ to a state with a natural frequency of 

to20 - -  ~ / (k2  + k~ + K/R2)/M2. (24) 

This transformation occurs because the upper block of 
the prototype model becomes a simple harmonic oscil- 
lator when the lower block becomes immobilized (cf. 
equation 7 of Bombolakis 1986). The equal sign applies 
in equation (24) when the damping is constant, as in the 
case of Coulomb frictional damping. The approximate 
sign applies when the damping is moderately velocity 
dependent, as in the case of weak viscous damping. 

During an earthquake, the ground motions involve a 
much broader spectrum of frequencies than does the 
geologic fault model in its present state of development. 
Theoretically, every continuous body is associated with 
an infinite number of frequencies. In practice, the high 
frequencies are damped out more rapidly than the low 
frequencies, and seismographs usually are designed for 
response in the lower range, e.g. the 10 Hertz range. 
Because the model here is a prototype, a comparison is 
made between the geologic fault model and traditional 
crack models in seismology. 

when both blocks in Fig. 2 have the same physical 
properties that change laterally due to a facies change in 
the foreland direction. For this case, Mt = 342 = M, 
ki = k2 = k and k I = k.; = k', but k ~: k'. For this 
case, equation (23) reduces to 

- -  (P - S ) L W  [ 
XI - -2(-k + k') t.(1 - COSto_~td) 

(/z 1 + ~! ( l - c o s w l t ~ ) ,  (25) 
\tot/ 

where 

, /k  + k' + 2K/R'- , g + k' 
W I  = M toz= M 

This equation, in turn. reduces to equation (3) of Bom- 
bolakis (1986) for the isotropic case of k = k'. In both 
cases, damping of block motion along the fault is con- 
stant, analogous to Coulomb damping (see Den Hartog 
1956, pp. 362-363) because the residual strength S is 
assumed constant during seismic fault slip. 

According to equation (25), the seismic net slip is 
directly proportional to the ratio of stress drop (P - S) 
and rupture length L with respect to the elastic con- 
stants, keeping in mind that W is only a unit width and 
that cosine functions are limited in value from + 1 to - 1. 
For comparison, the net slip equation for traditional 
crack models in earthquake seismology is 

U- aoV'-A- (26) 
C.~ 

where U is the average coseismic net slip (Kanamori & 
Anderson 1975). 

This equation shows that U is proportional to the ratio 
of the average stress drop Ao and the square root of 
rupture area A with respect to the rigidity modulus/~. C 
is a dimensionless factor that depends on the shape of the 
spreading crack The square root of A, of course, is 
proportional to rupture length L. Consequently, there is 
a good cross-correlation in this instance between the 
geologic fault model and traditional crack models in 
seismology. 

COMPARISON WITH SEVERAL CRACK 
MODELS IN SEISMOLOGY 

The geologic fault model in Fig. 2 differs in several 
important ways from the traditional crack models 
employed in earthquake seismology. The geologic 
model includes analyses of fault-slip velocity and strati- 
graphic anisotropy, but not rupture velocity, whereas 
the traditional crack models are formulated in terms of 
the rupture velocity of a spreading crack in isotropic 
media. Despite these differences, there is almost a one- 
to-one correspondence between the equations of net slip 
amongst these models for the condition of isotropy and 
for a simple case of stratigraphic anisotropy. 

The simplest case of stratigraphic anisotropy occurs 

EVALUATION OF FAULT PARAMETERS 

One of the most important relations in seismology is 
the seismic moment of the earthquake. According to 
elastic dislocation theory (Kanamori & Anderson 1975), 
the amplitude of very long-period waves is proportional 
to 

M0 = ,u UA. (27) 

Seismic moment M0 also is related to Es, the seismic 
energy of radiation, by 

E~ ~ (Ao/2~t)M 0, (28) 

where u usually is taken to be (3-5) x 1011 dynes cm -2 
and equation (26) provides an estimate of Ao(Kanamori 
1977). Brune (1968) shows how average seismic slip 
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rates can be calculated from the summation of seismic 
moments. His method therefore provides a potential 
means of partitioning geologic strain rates into seismic 
and aseismic modes because energy estimates have been 
made for some of the aseismic modes by Elliott (1976b) 
and by Mitra & Boyer (1986), and for some of the 
seismic modes by Kanamori (1977) and Sibson (1980). 

One of the principal difficulties here is that the details 
of the rupture process cannot be seen clearly through the 
long-period window where the seismic moment is 
observed (Aki 1983). The few strong-motion studies 
that have been made in the near field indicate that the 
rupture process is more complex than previously 
thought. Therefore, an analysis of the fault parameters 
in net slip equation (23) should provide information on 
some of the details. This equation indicates that the 
relevant fault parameters for a given rupture length 
include masses M1 and M2, their various spring constants 
and the radius of gyration. 

The equations for these parameters are derived in a 
forthcoming paper (Bombolakis in preparation). The 
radius of gyration is found to be 

R = LZ sec2 a + (29) 
12 3 

by calculating the moment of inertia I = M2R 2 of the 
upper block with respect to the top of the lower block of 
mass MI in Fig, 2. Equation (29) reduces to the equation 
for a rectangular block given by Den Hartog (1948, 
p. 225), i.e. when a = 0. Consequently, R accounts for 
rupture length L of the basal d6collement, topographic 
slope angle a of the thrust belt and the average vertical 
thickness H of the upper block in Fig. 2. It is one of the 
parameters that determine both the coseismic net slip 
and the fundamental frequencies of the system. 

R also is one of the parameters that determine torsion 
constant K. The torsion constant per unit width W is 

K / W  ~ EavgL R,  (30) 
2(1 + vavg.) 

where Ea~g. and rang., respectively, are the average values 
of Young's modulus E and Poisson's ratio v for the upper 
block in Fig. 2. The simplest way to estimate the elastic 
constants is to utilize data from seismic profiling. The 
data include density p, P-wave velocity, Vp, and S-wave 
velocity, Vs, where 

[ 3 V ~ -  4V 2 ] 
E = PU(vp/vs)2_ lJ (31) 

i[ 1 ] (32) 
v = ~ 1 -  (Vp/Vs)2 _ 1 " 

The other spring constants in Fig. 2 are the composite 
spring constants of four stratigraphic sequences located 
along the fore-and-aft ends of the fault model. These 
sedimentary packages are defined by their thicknesses, 
unit width W, and a common bed length 10 "~ L. Each of 
the four packages supports its own distinct set of stresses 
during a precursory stage. Thus, the stress in a given bed 
has to vary along length L of the fault model. But since 

l0 "~ L, the stress in each bed is locally uniform over 
length 10, or nearly so. For these conditions, the effective 
bed stress ~xx acting in the tectonic direction along each 
length l0 is given approximately by 

v pgyo(1 - 3t) + 6pgyo(1 - 2)  

EaT  A T  + E 
+ 1 -  v ~ G ~ ,  (33) 

where Y0 is the depth of the bed at one of the fore-and-aft 
end points. 

Each term on the right-hand side of (33) represents a 
specific physical contribution to the bed stress. The first 
term is the lateral effective stress component due to 
overburden pressure PgYo and the Hubbert-Rubey fluid 
pressure ratio 2. It is derived in the same manner as 
equation (3) of Jaeger & Cook (1969, p. 356). The 
second term takes into account the elastic anisotropy 
that was induced by compaction during the burial history 
of the bed, where the anisotropic parameter 8 is calcu- 
lated from seismic profiling data in the manner shown by 
Thomsen (1986). The effects of topography on these two 
terms appear to be minimal, except at rather shallow 
depths (Bauer et al. 1985). The third term is the stress 
due to the geothermal gradient, where aT is the linear 
coefficient of thermal expansion and A Tis the difference 
in temperature between the ground surface and depth Y0 
under steady-state conditions. Therefore the first three 
terms, in conjunction with the effective overburden 
pressure, represent a reference state o f  non-tectonic 
stress that is more appropriate than Heim's Rule (see 
McGarr & Gay 1978, pp. 431--432, and Suppe 1985, 
p. 184). The fourth term is the tectonic stress in the 
transport direction. It is produced by a tectonic elastic 
strain exx that may vary with depth along the fore-and-aft 
vertical boundaries of the fault model. The horizontal 
effective normal stress ~,, in the perpendicular direction 
has an equation essentially the same as (33), differing 
only in the coefficient of the fourth term; viz., with a 
coefficient (rE)~(1 - v2). The application of these equa- 
tions is illustrated by aEw and aNS in figs. 3 and 4 of 
Bombolakis (1986) for the special case of di ~ 0 and 

The linear spring constant of each bed at the fore-and- 
aft boundaries of the model, per unit width, is 

Ei hi (34) 
k i / W -  1 - ~ 1o' 

where hi is the thickness of bed i. From the standpoint of 
seismic stratigraphy, bed i is the interval velocity thick- 
ness over which the elastic constants Ei and vi are 
determined from seismic profiling data. Therefore, for n 
beds or for n interval velocity thicknesses in a sedimen- 
tary package, there are n equations of this form. 

These n equations enable a composite spring constant 
kss to be calculated for a sedimentary package. A surpris- 
ing feature of kss, however, is that it is not solely a 
function of the various kv It also is a function of how the 
elastic tectonic strain varies with depth. In situ stress 
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measurements indicate that the stresses in intact compe- 
tent rock increase more or less linearly with depth 
(Haimson 1977. McGarr & Gay 1978). Fluctuations 
have been traced in some cases to differences in the 
elastic constants of contrasting rock types (McGarr & 
Gay 1978, Haimson personal communication 1987). 
Consequently, the case considered here is that the elastic 
tectonic strain increases linearly with depth in each 
sedimentary package at the fore-and-aft ends of the fault 
model. 

Most methods of in situ stress measurement measure 
strains. Suppose, therefore, that a value e0 of the tectonic 
strain can be estimated for the uppermost bed of a 
sedimentary package, and that the in situ data indicate 
that this value of exx increases at a constant rate m with 
depth. The composite spring constant per unit width for 
these conditions is 

~ k i (md i + Co) 
k~s_ 1 iffil 

m ~, k i (md i + eo)d ki(mdi + Co) +Co 
i= 1 

(35) 

where di is the relative depth position of bed i within the 
sedimentary package. 

An important special case occurs when the elastic 
tectonic strain is nearly constant with depth. For this 
condition, m = 0. with the result that 

kss _ 1 ~ ki" (36) 
W Wi= t 

It is the same equation given by Den Hartog (1956, p. 36) 
for his composite spring constant. The important feature 
of this equation is that it can be used to estimate (35) 
without having to know the values of e0 and m. We need 
only interpret e0 as the average value of the elastic 

tectonic strain in the sedimentary package. Thus, when 
the elastic tectonic strains are not known, the composite 
spring constants kl, k{, k2 and k~ in Fig. 2 can be 
estimated directly with seismic reflection profiling data, 
using equations (31), (32), (34) and (36). These concepts 
are illustrated next with respect to a well documented 
thrust terrain in Wyoming. 

KEMMERER REGION OF THE WYOMING 
SALIENT 

Synorogenic conglomerates in the Idaho-Wyoming- 
Utah fold-and-thrust belt indicate that thrust faulting 
proceeded episodically, in a stop-and-go fashion, on 
both the grand scale and the scale of a single thrust 
system (Armstrong & Oriel 1965, Royse et al. 1975, 
Lamerson 1982. Wiltschko & Dorr 1983). Figure 5 is a 
reference map of this belt. The major thrusts are pro- 
gressively younger from west to east. Here. we consider 
the classic Kemmerer region with respect to the fault 
model. The major thrusts in this locale are the Absaroka 
thrust (A) and the Hogsback thrust (H). 

The Absaroka thrust is one of the earliest great thrusts 
discovered in North America. It is carried piggyback by 
the Hogsback. Cross-sections of the Absaroka were 
constructed along BB' through GG' of fig. 5 by Rubey 
et al. (1975) prior to modern seismic profiling and exten- 
sive drilling. Since then. a cross-section that extends 
easterly along and beyond section 6. across both the 
Absaroka and Hogsback thrusts, has become one of the 
most highly constrained balanced cross-sections in the 
Wyoming Salient, largely through the efforts of Lamer- 
son (1982, 1985), supplemented by Delphia & Bom- 
bolakis (1988). Special attention therefore is focused on 
this cross-section after we consider the seismic profile of 
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Fig. 5. Reference map of the Idaho-Wyoming-Utah foreland belt. A = Absaroka thrust, C = Crawford thrust, 
D = Darby thrust, H = Hogsback thrust, M = Meade thrust, P = Prospect thrust and PW = Paris--WiUard thrust. The 
enlargement on the right shows the locations of published cross-sections within theKemmerer  region. Sections BB',  CC', 
DD',  EE'I FF' and GG'  are presented by Rubey et al. (1975). Section N is given by Norton (1983), and section III 
corresponds to Plate III of Royse et al. (1975). Sections 2 and 6 correspond, respectively; to Plates 2 and 6 of Lamerson 

(1982). Sections 29, 30, and 31 are published by Dixon (1982) in generalized form. 



Thrust fault mechanics and dynamics 447 

I E MARATHON HAMILTON AMOCO AMOCO AMOCO " 7  8 
~ . ~ I I ~ I T C ~ w .  HAMa.TONFED 1'-I! 1--ClIC-S,4111A 1-CPC-5490 1-CliC-41aA _.J 

k PROd. 1.1 ML PllO,I. Toeo' ~ m~oJ. 14oo" CORRELATION CHART . - . I  6 

. . . . . . . . . . . . . . . . . . . .  . . . . . .  _ ' i ' . .  _ . + _  . . . . . . .  , _ _ . , . _ . = _ ,  

• ' : ~ ' - ' ~ ~ ~ ~ : ~ L ' - , . . . - : ~ . ; ~ , ~ + - ~ . , : - ' - "  : - . - , 1 .  . " ~ . . ;  , ' : ~ ; ' : . . ' - ~  . . . . . . . . . . .  I . . . . . ,  

~ ~ , , U i ~ t i ~ i ~ l ~ s ~ 1 4  ~ ~ .  ._~  "_~-:."rl~.~ .: . . . . . .  ~ ~  : . . ~ .  
~ -  " ~  ~ " ~ , A , ~  ~ ~ - " .  . _ _  " : - ' ~ - - ; - - . ; ~  

~ ~ ,  i ;~_. .~-_ ' -~ .---,.-~ - -~-- -  -~---~-.-.-i~- _ - "  . .. --_'- , . ~  ~- .;-- " - -  - 

~ - -  _. .--~.. .~,~<~- " . ~ z ~  _ ~  . ~ ~ . _ . . _ - -  - ~  ~ - ~  '. 
~ ~ - _ _ ~ . - - : ~ - . . ~ - - . . ~ .  ~ _  . . . . .  . . . .  -" ~ - . -  i - ; ~ . ~  
;...~,~. . ~ ~ . . ~ -  . : - -  , .  - -  - ~ . .  - ~ _ . . : _ . =  

Fig. 6. Seismic section of  the Hogsback  frontal  ramp,  located approximate ly  40 km south  of K e m m e r e r .  (Darby  thrust  -= 
Hogsback  thrust . )  F r o m  fig. 5 of  Will iams & Dixon  (1985). 

Williams & Dixon (1985), located 40 km south of Kem- 
merer. Both sections are subparallel, spaced some 55 km 
apart, and cut across the Hogsback ramp. 

Some vital clues to the origin of the Hogsback ramp 
are revealed in Figs. 6-8. Figure 6 is part of the seismic 
reflection profile by Williams & Dixon (1985). No 
attempt was made to identify every fault in the imbricate 
zone, and so the representation of the overthrust com- 
plex is relatively schematic. However their seismic pic- 
ture of the ramp footwall strata is observed commonly in 
seismic profiles across the belt (Dixon personal com- 
munication 1987, Lamerson, personal communication 
1987 and see seismic profile of Norton 1983). Con- 

sequently, this picture frequently was interpreted as an 
anticlinal structure during hydrocarbon exploration. If 
correct, we would have to consider that the origin of the 
frontal ramp probably was related to folding processes, 
and not simply due to compression-induced brittle shear 
fracture. Extensive drilling along the belt, however, has 
demonstrated that the picture of the ramp footwall 
strata illustrated in Fig. 6 is usually the result of a velocity 
pullup. 

Figure 7 shows the seismic profile of the ramp footwall 
strata corrected with well data by Williams & Dixon 
(1985). Their cross-section now indicates that the 
Hogsback frontal ramp developed in a semi-brittle man- 
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Fig. 7. Cross-section showing the s t ructure  of  the r amp  footwall  in Fig. 6 corrected with well data by Williams & Dixon 
(1985), f rom their fig. 10. 
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Fig. 8. Balanced cross-section of the Absaroka (A) and Hogsback (H) thrust sheets, 15 km north of Kemmerer. It is co-linear 
with section 6 in Fig. 5, and extends as far east as section 29in Fig. 5. The three key marker beds are Ordovician Bighorn 
dolomite (Obh), Permo-Pennsylvanian Weber sandstone-PIP~,) and Triassic Nugget sandstone (TR,). The Lazeart syndine 
(L) is demarcated by a solid-line curve drawn along contact between Frontier Formation and Cretaceous Hilliatd elastic 
sequence (Kh). Reference line e--f transforms to e'-f' in Fig. I0 during palinspastic restoration, From Delphia & Bombolakis 

(1988). 

ner. Diagnostic features are: (1) relatively undeformed 
competent strata in the ramp footwall; (2) the fact that 
the ramp is sharply defined in seismic profiles: and 
(3) the almost 30* angle that the ramp makes with 
bedding in the footwall. 

These observations indicate that the ramp developed 
by shear fracture due to subhorizontal compression. A 
single spreading fracture, however, would have been 
blunted by incompetent beds within the predominantly 
competent sequence. The weak beds include members 
of the Ankareh, Woodside and Dinwoody Formations, 
and soft shales of the Gannett Formation above the 
predominantly competent sequence (Table 1). The ramp 
therefore must have developed progressively by sequen- 
tial incremental fracture of the competent beds, with 
localized shearing across the interbedded incompetent 
members. 

Figure 8 reveals the same features of the Hogsback 
ramp and ramp footwall strata illustrated in Fig. 7, and 
several additional important features. L is the Lazeart 
syncline--a major fold more than 70 km in length--adja- 
cent to the Hogsback ramp. The three open circles 
indicate three wells close to the section, wells in which 
unusually extensive dip meter data provide criticai con- 
trol for defining the geometry of the imbricated ramp 
anticline. Delphia & Bombolakis (1988) demonstrate 
that most of the imbricates had formed in the break-back 
sequence, i.e. sequentially in the hinterland direction. 
Three key beds of the predominantly competent 
sequence are delineated to facilitate discussion of the 
structure. They are the Ordovician Bighorn dolomite, 
the Permo-Pennsylvanian Weber sandstone and the 
Triassic Nugget sandstone. 

According to the geologic fault model in Fig. 2, recur- 
ring basal slip stores elastic strains temporarily in the 
frontal zone. Recurrence intervals of repeatable earth- 

quakes range from a few tens of years to a few hundred 
years to several thousand years (Schwartz & Copper- 
smith 1986). The longer the interseismic interval, the 
longer the time for aseismic modes to dissipate the 
elastic strains. Overprinting by aseismic modes such as 
cleavage development and pressure solution accordingly 
can make analyses of mechanical evolution highly com- 
plicated. For this reason, the Kemmerer region is 
appropriate for a first attempt at this type of analysis. 
The strata exhibit no significant metamorphism (Rubey 
et al. 1975, Mitra & Yonkee I985). A remarkable feature 
observed independently by Dixon (1982) and Lamerson 
(1982) is that the predominantly competent sequence, 
just above the basal d~co/lement, extends westward 
30 km beyond c - d  of Fig. 8 with no deformation appar- 
ent within the resolution of current subsurface data. 

I therefore consider the possibility that the Hogsback 
frontal ramp resulted from recurring slip of the thrust- 
belt segment along rupture length L in Fig. 1, and 
predict where shear failure should have been initiated 
within the predominantly competent sequence to form 
the Hogsback ramp. This problem is analyzed as a 
function of: (1) effective overburden pressure; (2) the 
geothermal gradient; (3) contrasts of the elastic con- 
stants; (4) competency contrasts; and (5) the elastic 
tectonic strain gradient with depth. For a first analysis, a 
standard fluid pressure gradient with depth is adopted 
with a Hubbert-Rubey fluid pressure ratio of 2 = 0.435. 
A geothermal gradient of20*C km -t is based on the data 
of Warner & Royse (1987). The analysis then is applied 
to two cases: (1) the case of an elastic tectonic strain that 
is constant with depth down to the level of the basal 
ddcollement, in a manner somewhat similar to the hori- 
zontal strain induced initially in compressional sandbox 
experiments: and (2) for the case of an elastic tectonic 
strain that increases linearly with depth. 
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Table 1. Data for limit equilibrium mechanics of initial development of the Hogsback frontal ramp, assuming a shear-failure origin in response 
to fault slip on the basal drcollement, and Hubbert-Rubbey fluid pressure ratio of 0.435 for permeable strata 

Stratigraphic unit, depth Elastic constants~" 
(km) to middle of unit* E, v, aT 

Mohr envelope strength criteria~c LimitingJ 
Angle of elastic 

Cohesion internal strain 
r0 friction Limiting§ stress state (MPa) e,~ 

Rock type analog (MPa) (*) 5v aNs SEW (%) 

Bear River Formation 1.9, 0.3, 8 Repetto siltstone 5 17 169 140 240 0.67 
(Lower Cretaceous) 
6.9 

Gannett Formation 4.2, 0.2, 8 Repetto siltstone 5 17 176 130 230 0.30 
(Jurassic--Cretaceous) 
7.2 

Stump--Preuss (Jurassic) 5.7, 0.2, 10 Berea sandstone 20 29 102 140 320 0.32 
7.4 

Twin Creek Formation • 5.0, 0.3, 8 Solenhofen limestone 110 30-25 105 280 620 1.10 
(Jurassic) 
7.6 

Nugget Formation 6.8, 0.2, 10 Tennessee sandstone 60 40-30 108 255 630 0.66 
(Triassic) 
7.8 

Ankareh Formation 6.8, 0.2, 8 Muddy shale 20 30-22 196 180 300 0.21 
(Triassic) 
8.0 

Thaynes Formation 5.1,0.3, 8 Hasmark dolostone 32 43-25 115 260 525 0.94 
(Triassic) 
8.3 

Woodside-Dinwoody 6.8, 0.2, 8 Muddy shale 20 30-22 213 235 490 0.69 
(Triassic) 
8.7 

Phosphoria Formation 7.6, 0.1, 8 Muddy shale 20 30-22 216 205 480 0.40 
(Permian) 
8.8 

Weber Formation 7.6, 0.1, 10 Weber Sandstone 70 30 123 205 525 0.52 
(Permo-Pennsylvanian) 
8.9 

Morgan Formation 7.6, 0.1, 10 Muddy shale 20 30-22 221 205 440 0.34 
(Pennsylvanian) 
9.0 

Madison Formation 7.4, 0.3, 8 Marianna limestone 20 30-20 129 170 350 \ 0.13 
(Mississippian) 
9.3 

Darby Formation 7.4, 0.3, 8 Hasmark dolostone 32 43-25 132 360 600 0.58 
(Devonian) 
9.5 

Bighorn Dolomite 8.1, 0.3, 8 Blair dolostone 45 45 134 400 790 0.62 
(Ordovician) 
9.7 

Gallatin Formation 5.6, 0.3, 8 Solenhofen limestone 110 30-25 137 280 665 0.78 
(Cambrian) 
9.9 

Gros Ventre Formation 7.3, 0.1,8 Muddy shale 20 30-25 245 180 380 0.52 
(Cambrian) 
10.0 

* Depths of ramp footwall strata at time of ramp development based on data of Warner & Royse (1987). 
t Young's modulus E and Poisson's ratio v of non-carbonate rock types calculated with equations (31) and (32) from velocity data in Table 2. 

Young's modulus of carbonate rocks calculated from V, data in Table 2, assuming that Poisson's ratio equals 0.3 in lieu of adequate V, data. 
60  1 a Values of the coefficient of thermal expansion aT from Skinner (1966) are in units of 10- C- . Values of E are in units of 104 MP . 

~t Strength data from Handin (1966), and from John Delphia and Jack Magourik of the Center for Tectonophysics, Texas A & M. Strengths of 
Twin Creek and Gallatin Formations, for example, are modeled with Solenhofen limestone because these formations contain fine crystalline or 
micritic limestones. Variations shown for the angle of internal friction are from low to high effective confining pressure. 

§ Data of Handin (1966) indicate that strengths of sandstones, limestones and dolostones are reduced 10% or less for the temperature range 
under consideration, whereas strengths of Repetto siltstone and Muddy shale are reduced by 30% to 50% over this temperature range. An 
example is given in Fig. 9. Density for all units is assumed to be # -- 2500 kg m -3. 

II Figure 9 illustrates how limiting values are calculated with the fourth term of equation (33) for Nugget sandstone. For example, if Madison 
Formation had a strength equal to Hasmark dolostone instead of Marianna limestone, the strain value would have been closer to 0.46% instead 
of 0.13%. 
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Precise data for the elastic constants and strengths of 
footwall strata encompassed by the Hogsback ramp are 
not available yet. Estimates are based on other empirical 
data. For example, the elastic constants of the strata are 
estimated from equations (31) and (32) with velocity 
data from the Kemmerer region, using empirical rela- 
tions between P-wave and S-wave velocities of specific 
rock types because only the P-wave velocities custom- 
arily are calculated during seismic profiling. However. 
modern computer programming capacities now enable 
both velocities to be determined on a routine basis 
(Thomsen 1986), and so more refined velocity data for 
thrust-belt analyses are to be expected in the not too 
distant future. In the meantime, the stratigraphic inter- 
vals in Table 1 are defined in terms of the velocity 
intervals currently available for the Kemmerer region in 
Table 2. 

The potential failure states of stress, corresponding to 
a specific depth of each stratigraphic unit in the ramp 
footwall, are tabulated in Table 1. There, ~EW is the 
subhorizontal effective principal stress in the easterly 
tectonic transport direction, with ~ s  as the effective 
principal stress in approximately the north-south direc- 
tion and with ~,. as the effective overburden pressure. 
Each reference stress state is calculated from the first 
three terms of equation (33), assuming that ~ = 0 in lieu 
of adequate data. Each stress state for failure is esti- 
mated from Mohr envelope strength criteria of rock 
types similar to rock types in the ramp footwall. An 
example is given in Fig. 9. It shows the two contrasting 
stress states for the Nugget sandstone at a depth of 7.8 
km. This value of depth Y0 in equation (33) is based on 

the analyses of Warner & Royse (1987) who show that 
erosion on the average had kept pace with thrusting of 
the Absaroka and Hogsback thrust sheets, with approxi- 
mately 2.2 km of rock eroded since the emplacement of 
the Hogsback sheet. 

The failure stresses in Table 1 enable limiting values of 
the elastic tectonic strain to be calculated for each 
stratigraphic unit in the manner illustrated in Fig. 9. This 
method is based on limit equilibrium mechanics, a stan- 
dard procedure in soil mechanics and engineering rock 
mechanics to estimate upper limits of failure conditions 
when boundary-value problems cannot be formulated 
with precision (e.g. Lambe & Whitman 1979). From the 
standpoint of limit equilibrium mechanics, the strain 
values in Table 1 do not necessarily represent actual 
elastic tectonic strains required to induce shear failure in 
the ramp region. Instead. they indicate which strati- 
graphic units should be the first to undergo progressive 
failure. 

Table 1 indicates that the massive dolomitic lime- 
stones of the Madison formation should be the first beds 
to undergo progressive failure, regardless of whether the 
tectonic elastic strain increases linearly with depth in the 
footwall strata or is constant with depth. However, if the 
Madison is more comparable in strength to the Hasmark 
dolostone than the Marianna limestone, then the critical 
relative value of the elastic tectonic strain of the Madison 
would be closer to 0.46% than to 0.13%. Shear failure 
development of the ramp accordingly would have been 
initiated nearly simultaneously in several incompetent 
units higher in the stratigraphic section of the predomin- 
antly competent sequence. 
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Fig. 9. Limit equilibrium anlaysis for shear fracture initiation of the Triassic Nugget sandstone at 7.8 km depth during 
development of Hogsback frontal ramp, A standard Hubhert-Rubey fluid pressure ratio of 0.435 and a geothermal gradient 
of 20"C km -I are assumed. According to data of Handin (1966), the strength of competent sandstones is reduced 10% or 
less for the temperature range under consideration. The limiting value of 0.66% elastic tectonic strain at incipient failure is 

calculated from the fourth term of equation (33) and data in Table 1. See text. 
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Table 2. Stratigraphic and velocity data for calculation of elastic stiffnesses of strata along vertical sections h z and h3 
of Fig. 1, for the Kemmerer region of the Wyoming Salient 
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Section he 
Stiffness coefficient§ 

Thickness* Vp? V,* C 
Stratigraphic interval (m) (msec -l ) (m sec -I ) (10 Is N m -l) 

Upper Cretaceous--early Tertiary 
Hilliard Formation (Upper Cretaceous) 
Frontier Formation (Upper Cretaceous) 
Aspen Formation (Lower Cretaceous) 
Bear River Formation (Lower Cretaceous) 
Gannett Formation (Jurassic--Cretaceous) 
Stump--Preuss (Jurassic) 
Twin Creek Formation (Jurassic) 
Nugget-Dinwoody (Triassic) 
Phospho.ria (Permian) through Morgan 

(Pennsylvanian) 
Madison Formation (Mississippian) through 

Darby (Devonian) 
Bighorn Dolomite (Ordovician) 
Gallatin-Gros Ventre (Cambrian) 

Sum of Coefficient** 

1300 ~I 3000 
26301 4000 
850 3800 
270 4500 
240 3300 
300 440O 
180 5OO0 
300 5200 
890 5300 
430 5600 

450 6300 

150 6600 
370 5500 

= 3 . 7  x 1014 N m-I 

1400 2.0 
2200 9.8 
2100 2.6 
2700 1.3 
1700 0.5 
2600 1.3 
3100 1.1 
2800** 1.7 
340O 6.1 
3700 3.3 

3400** 3.6 

3500** 1.3 
2900** 2.3 

Stratigraphic interval 

Section h 3 
Stiffness coefficient§ 

Thickness* C 
(m) (1013 N m -l) 

Cretaceous-Tertiary 0 0 
Hilliard Formation 610 2.3 
Frontier Formation 850 2.6 
Aspen Formation 240 1.1 
Bear River 210 0.4 
Gannett 270 1.2 
Stump-Preuss 180 1.1 
Twin Creek 300 1.7 
Nugget-Dinwoody 910 6.2 
Phosphoria through Morgan 400 3.1 
Madison through Darby 430 3.5 
Bighorn 150 1.3 
Gallatin-Gros Ventre 370 2.3 

? t  - - m n  

Gannett-Bear River 270 1.2 
Stump-Preuss 150 0.9 
Twin Creek 240 1.3 
Nugget-Dinwoody 880 6.0 
Phosphoria-Morgan 370 2.8 
Madison-Darby 430 3.5 
Bighorn 150 1.3 
Gallatin-Gros Ventre 370 2.3 

Sum of Coefficient¢, -- 4.6 x 1014 N m -I 

* Thicknesses determined from Plate 6 of Lamerson (1982) and from fig. 8D of Delphia & Bombolakis (1988) 
which shows a retrodeformed state that corresponds to the stage shown in Fig. 1. Densities are assumed to be 2500 
kg m -3 for all strata in lieu of adequate data. 

? Estimates of Vp obtained from several sources, courtesy of Champlin Petroleum Co. and Conoco Inc. 
~: Shear wave velocities calculated from empirical relations between Vp and Vs, given by Castagna et al. (1985). 

Exceptions in ** 

§ In equation (34), C = ~ hi. 

II Estimated from assumption that the ratio of total thickness along h2 with respect to total thickness along h3 
remained approximately constant during Hogsback thrusting (cf. Warner & Royse 1987). 

The Hiiliard elastics along section h2 are overturned in the Lazeart syncline. Their vertical (apparent) thickness 
is estimated from the retrodeformed state in fig. 8D of Delphia & Bombolakis (1988), and from positions of 
unconformities in Plate 6 of Lamerson (1982). 

** V, for carbonate units calculated from Vp, with the assumption that Poisson's ratio = 0.30 in lieu of adequate 
data. 

?? Dashed line demarcates the contact between hangingwall strata and footwall strata along section h3. 
~:* The summation is made with respect to equation (36), with the result that the ratio for h3 with respect to h2 is 

approximately 1.2. 
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Table i thus illustrates how the theory predicts which 
stratigraphic units undergo initial shear failure to 
develop a frontal ramp. The theory also predicts the 
amount of permanent strain induced within footwall 
strata along the ramp. Because the development of a 
frontal ramp by shear fracture should proceed in incre- 
mental stages during recurring slip of the geologic fault 
model, the total permanent strain within intact portions 
of ramp footwall rock should be in the range of 2-10% 
when pressure solution effects are not pervasive (see 
discussion of Bombolakis 1986, p. 286). This prediction 
is consistent with the twin lamellae measurements made 
thus far in ramp regions of foreland thrust plates. Spang 
et al. (1981), for example, calculate average strains of 
5% from calcite and dolomite lamellae measurements in 
ramp regions of the McConnell thrust plate. The 
maximum principal strains were found to be subparallel 
to bedding, in the direction of tectonic transport. 

It is still uncertain whether rupture length L of the 
fault model corresponds directly to the spacing between 
major frontal ramps. If a direct relation does exist, then 
equation (8) of Bombolakis (1986) predicts how several 
thrust-belt parameters affect the spacing. That analvsis 
is necessarily oversimplified at this stage, and so further 
analyses of this important problem are required before 
various types of ramp spacing can be understood 
adequately. In the meantime, a problem that can be 
attacked more directly is the mechanical evolution of the 
imbricated ramp anticline in Fig. 8. 

Delphia & Bombolakis (1988) demonstrate that most 
of the imbricates formed sequentially from east to west 
in the hinterland direction, thereby indicating that pro- 
gressive locking of the upper plate developed in the 
ramp region. Since erosion on the average kept pace 
with thrusting of the Absoraka and Hogsback thrust 
sheets, the temperature and confining pressure gradients 
in Fig. 8 did not fluctuate in the manner usually 
hypothesized for rapid emplacement of thrust sheets 
(Warner & Royse 1987). Along each curved imbricate, 
there is a decrease of fault displacement upward, com- 
pensated by additional folding upward. Thus, if the 
imbrication were associated with seismic as well as aseis- 
mic modes of deformation, then the development of the 
imbricated ramp anticline would be consistent with the 
observation in continental seismic zones that aftershock 
and microseismic activity vary sporadically with depth, 
usually with pronounced decrease within a depth range 
of a few km of the topographic surface (Sibson 1983). 

Therefore, we consider how laboratory studies and 
certain other field data indicate whether the imbrication 
of ramp anticlines involves seismic modes of deforma- 
tion. A fundamental observation in laboratory studies of 
deformation is that contrasts in elastic stiffness between 
the loading system and the test specimen frequently 
determine whether failure proceeds in a quasi-stable or 
unstable manner (Cook 1981). If the stiffness of the 
loading system is appreciably greater than the stiffness 
of the specimen, then failure can proceed in a quasi- 
stable manner, regardless of whether the deformation is 
brittle or ductile. But if the stiffness of the loading 

system is approximately the same or less than the stiff- 
ness of the specimen, then failure can proceed in a more 
unstable manner with sudden stress drops. For this 
reason, a comparison of elastic stiffness is made with 
respect to the pattern of deformation in Fig. 8. 

Suppose that Fig. 1 represents a precursory stage in 
the initial transformation of a simple ramp anticline into 
an imbricated ramp anticline (of. fig. 5 of Boyer 1986). 
Each time recurring slip occurs along rupture length L, 
the thrust-belt segment stores an elastic strain in the 
stratigraphic sequence along h,.. The sequence along h 2 
accordingly acts like a loading system that induces defor- 
mation in the ramp region over a time period that is large 
compared to the recurrence interval of seismic events 
along rupture length L. Thus, a comparison of the 
composite stiffness constants of the stratigraphic 
sequence along h, with respect to the duplicated 
sequence along h 3 should indicate whether seismic as 
well as aseismic modes of deformation would have occur- 
red in the ramp region. 

Strata data for these two secuons with respect to the 
structure in Fig. 8 are tabulated for the Kemmerer 
region in Table 2. Using these data in equations (31), 
(32), (34) and (36), the ratio of the composite spring 
constants for h 3 with respect to hz is found to be in the 
range of 1.18-1.25. That is, the lithologic section along 
h 3 was approximately 1.2 times stiffer than the lithologic 
section along h2. Since h, in Fig. 1 is analogous to a 
loading machine in the laboratory, h 3 is analogous to the 
middle section of a laboratory test specimen. During 
most laboratory experiments on brittle material, where 
the testing machine is not stiffer than the test specimen. 
the system comprising the machine and specimen 
becomes unstable at or near the peak of the stress-strain 
curve, resulting in violent failure due to rapid release of 
the relatively large amount of strain energy stored in the 
machine. As a rule of thumb, the ratio of the elastic 
energy in the machine to the strain energy in the speci- 
men is more or less inversely proportional to the ratio of 
their spring constants (e.g. see equation 1 of Cook 
1981). Therefore, since the ratio of the composite spring 
constants of h 3 with respect to h2 was close to 1.2 in the 
Kemmerer region, seismic as well as aseismic modes of 
deformation probably did occur during imbrication of 
the ramp anticline in Fig. 8. The source of the elastic 
strain energy in front of h_, in Fig. 1 therefore may have 
been recurring seismic and aseismic slip of the thrust-belt 
segment along rupture length L of the basal dEcolle- 
ment. 

Finally, despite the fact that the Lazeart syncline is 
adjacent to the Hogsback ramp, this fold actually is 
unrelated to the primary structure in the ramp region. 
Figure 10 shows the final stage of palinspastic restoration 
performed on fig. 8 of Delphia & Bombolakis (1988). 
Their analysis indicates that the Lazeart syncline had 
developed prior to the formation of the Hogsback frontal 
ramp. Apart from minor subsequent modifications, this 
major fold--more than 70 km in length--essentially 
had only gone along for the ride during Hogsback thrust- 
ing. 
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Fig. 10. Retrodeformed state of the structure in Fig. 8. prior to development of the Hogsback frontal ramp. Same notations 
as in Fig. 8. From Delphia & Bombolakis (1988). 

C O N C L U D I N G  R E M A R K S  

If  recurr ing seismic slip occurs along a flat in a foreland 
belt ,  then transient  elastic tectonic strains are imposed  at 
the leading edge of  the thrust-belt  segment  that  has 
slipped. Their  effects accordingly can be est imated with 
limit equil ibrium mechanics.  T he  appropr ia te  choice of  
rheologic  criteria depends  on whe ther  folding and flow 
are more  p rominen t  than brittle fracture and imbricate 
faulting. Regardless  of  the choice,  there is no  fundamen-  
tal difference in the mode  of  analysis; only in the 
implementa t ion ,  provided that  recurr ing creep and seis- 
mic slip have occurred  along a fault segment  of  the basal 
d6col lement .  

O t h e r  pa ramete r s  that  need to be incorpora ted  in 
subsequent  analyses include the net  slip variat ion along 
the strike o f  a thrust  sheet,  and the elastic shear stiff- 
nesses o f  the strata,  as well as the extensional  and 
compress ional  elastic stiffnesses. They  provide the data  
necessary to begin quanti tat ive analyses o f  r amp 
deve lopment ,  imbricat ion and buckling. In each case, 
the elastic constants  o f  differing strata within a sedimen- 
tary package  are required.  Because  labora tory  evalua- 
t ion of  the elastic constants  is difficult and expensive,  
their evaluat ion f rom seismic velocity data  is more  suita- 
ble. The  calculation o f  the elastic constants  f rom seismic 
velocities, however ,  requires that  appropr ia te  values of  
the velocities be chosen.  Seismic velocities tend to 
increase m o r e  or  less with depth  in a stratigraphic 
sequence.  Thus ,  a given format ion  located at two differ- 
ent  depths  due  to faulting or  folding may  exhibit two 
different  sets o f  seismic velocities. The  reason for  this 
p h e n o m e n o n  appears  to be selective closure of  cracks,  
joints,  and fractures as a funct ion o f  effective confining 
pressure (O 'Conne l l  & Budiansky  1974). Consequent ly ,  
a m e t h o d  needs  to be deve loped  in explorat ion 
geophysics  whereby  seismic velocity data  are processed 
to take these factors into account .  Then ,  some critical 
field data  no t  previously utilized would  be available for  
quant i ta t ive analyses of  thrust-belt  problems.  
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